

1 EnviroTools: Ziele und Kenntnisse

- Unterlagen für Sensibilisierung und Wissensvermittlung zur alpinen Natur und Umwelt.
- Fördert die Wahrnehmung der Umgebung, macht Spass, vertieft das Gruppenerlebnis.
- Keine fachlichen Vorkenntnisse nötig. Die anleitende Person sollte sich jedoch gut vorbereiten und sich mit der Anleitung und den Karten vertraut machen.

EnviroTool Gesteine Das 3x3 der Klettergesteine der Schweiz

GEEIGNETER ORT

- Überall dort, wo Gesteine des Gebiets gut zugänglich sind dies kann auch bei der Hütte sein.
- Kann auch in einer Unterkunft gewinnbringend eingesetzt werden (Schlechtwetterprogramm). In diesem Fall können Gesteine der Umgebung vorgängig gesucht und mitgenommen werden.
- Das Auslegen der Kartensets ist bei stärkerem Wind nicht geeignet.

DAUER

• Einstieg	10 Min
• Grund-Animation: Das 3x3 der Klettergesteine der Schweiz	45 Min
Aufbau-Animation 1: Alpines Gesteins-Quiz	15–30 Min
Aufbau-Animation 2: Gesteine der Umgebung wahrnehmen	15 Min

NR	. UND TITEL DER KARTEN	FORMAT	KARTENANZAHL
_1	Deckblatt und Grundinformationen	A5	1 Karte
2	Anleitung	A5	1 Karte
3	Gesteinszonen und die drei Gesteinsklassen	A4	1 Karte
4	Informationen über Gesteine und Gebiete	A5	2 Karten (4a/b & 4c/d)
5	Fotokarten Gesteine und Gebiete	A5	$3 \times 3 = 9 \text{ Karten } (5a-5i)$
6	Fotokarten Landschaften	A6	3 x 3 = 9 Karten (6a-6i)
7	Quiz	A5	3 x dieselbe Karte
8	Lösungskarte Quiz	A5	1 Karte
9	Anleitung Schichtung – Schieferung	A5	1 Karte
10	Ausbildungsgebiete SAC	A5	1 Karte

MATERIAL

Evtl. Hammer, Feldstecher, Lupe

2 Anleitung: Vorschlag für Ablauf

WARUM DIESES THEMA?

Gesteine sind zusammen mit Schnee und Eis das «Grundmaterial des Bergsports». Als unsere ständigen «Begleiter» ist es interessant, sie etwas besser kennen zu lernen. Die verschiedenen Gesteinsarten bestimmen die Art des Kletterns, des Geländes und seiner Sicherheitsaspekte, aber auch die ganze Gebirgslandschaft und die Bergformen.

LERNZIELE

Grund-Animation

- Die Grundeigenschaften und Unterschiede der drei wichtigsten Schweizer Klettergesteine kennenlernen.
- 2. Elementare Kenntnisse über deren Entstehung.
- 3. Verbindung der drei Gesteinsarten mit wichtigen Touren-/Klettergebieten der Schweiz.

Aufbau-Animation 1

4. Vertiefung von Hintergrundwissen zu den Klettergesteinen der Schweiz.

Aufbau-Animation 2

5. Die Gesteine und gegebenenfalls die Gesteinsvielfalt der Umgebung bewusst wahrnehmen und soweit möglich interpretieren.

1. EINSTIEG

Dauer 10 Min. Material: Karte 3 Gesteinszonen und Gesteinsklassen

- a. Der Coach erläutert das Warum und die Lernziele (siehe oben), sowie die Struktur der Ausbildungseinheit (Grund-, Aufbauanimationen).
- b. Die Gruppe diskutiert, in welchem Gesteinstyp man sich hier befindet, und trägt das Wissen darüber zusammen. Es können auch Gesteinsstücke angeschlagen werden, um eine frische Bruchfläche zu sehen, und das Gestein mit Lupe (oder einem umgekehrten Feldstecher, Smartphone-Lupe) anschauen zu können.
- c. Der Coach gibt die Gesteinszonenkarte an die Gruppe, und die TN checken, welche Gesteinstypen man gemäss dieser Karte finden sollte. Bei Nicht-Übereinstimmung kurzer Austausch über mögliche Gründe. Die Darstellung der drei Gesteinsklassen kann bei Bedarf beigezogen werden.

2. GRUND-ANIMATION: DAS 3x3 DER KLETTERGESTEINE DER SCHWEIZ

Dauer 45 Min. Material: Karten 3-6

Hinweis: Bei den Gesteinen wird jeweils auf die Nummer der ausführlichen Beschreibung im Buch «Gesteine der Schweiz» verwiesen: «GdS Nr. xy».

a. Der Coach leitet ein kurzes Brainstorming zu den wichtigsten Klettergesteinen der Schweiz, deren Charakteristika und Vorkommen in bekannten Kletter- und Bergsteiger-Gebieten.

- Er kann sich an den Angaben auf den Karten 3 und 4 orientieren. Darauf hinweisen, dass es noch viele andere Klettergesteine gibt und einige Beispiele nennen (Karte 4d).
- b. Der Coach verteilt die Fotokarten Gesteine und Gebiete (Karten 5). Die TN gruppieren die Karten nach Kalk, Granit und Gneis ohne Zuhilfename der Rückseite.
- c. Alle TN wählen 1–3 Karten aus (je nach Gruppengrösse). Sie studieren kurz die Infos auf der Rückseite
- d. Der Coach moderiert eine Präsentationsrunde der Gesteins-Infos durch die TN.
- e. Der Coach verteilt die Fotokarten Landschaften (Karten 6, A6). Die Fotos sind mit den Gebietsnamen angeschrieben, auf der Rückseite sind kurze Zusatzinfos zum jeweiligen Gestein enthalten diese vorerst nicht lesen! Die Gruppe ordnet diese Fotos den Fotokarten Gestein und Gebiete (Karten 5) zu.
- f. Der Coach kontrolliert anhand der Karten 4 a–c. Die Auslage kann dann gemeinsam angeschaut werden. Es können auch persönliche Erfahrungen mit den Gebieten/Routen in Bezug auf die Gesteinsqualität etc. ausgetauscht werden.

3. AUFBAU-ANIMATION 1: GESTEINS-QUIZ

Dauer 15-30 Min. Material: Karten 7, 8 und 9

- a. Der Coach verteilt Quizkarte 7 an Zweierteams, auf welchen 18 Fragen zu den drei Gesteinsklassen formuliert sind, die jeweils mit «richtig» oder «falsch» angekreuzt werden sollen. Zeitvorgabe 10 Min.
- b. Der Coach leitet das Durchgehen der Fragen mit der Lösungskarte 8 an. Falsche Zuordnungen werden kurz diskutiert. Es kann ein Siegerteam mit den meisten richtigen Antworten erkoren werden.
- c. Falls Lust und Zeit vorhanden ist, kann der Coach das Thema der Frage 18 «Schichtung versus Schieferung» anhand der Karte 9 moderieren.

4. AUFBAU-ANIMATION 2: GESTEINE DER UMBGEBUNG

Dauer 15 Min. Material: Karten 3 und 10

- a. Der Coach ermuntert die TN, in der nächsten Umgebung möglichst verschiedenartig aussehende Gesteinsstücke zu sammeln und gemeinsam zu gruppieren: Was gehört zusammen, was sind die Unterschiede?
- b. Kurzdiskussion anregen zu folgenden Leitfragen:
 - Welche Unterschiede sind auf tatsächlich unterschiedliche Gesteinsarten zurück zu führen, welche auf unterschiedliche Oberflächen (Flechten, Rost-Überzüge, Verwitterung, etc.)?
 - Welche der drei Grundgesteinstypen sind vorhanden: Sedimentgesteine, magmatische Gesteine, metamorphe Gesteine?
 - Finden sich diese Gesteinsarten auch in den Felsen, Wänden, Bergen der Umgebung oder scheint es dort noch komplett andere Gesteine zu geben?
- c. Auf der Karte 10 finden sich für 6 Ausbildungsgebiete Informationen zu den obigen Fragen.

3b Die drei Gesteinsklassen

Man unterscheidet die folgenden drei grossen Gesteinsklassen. Für die Zwecke dieses EnviroTools können die aufgehellten Unterklassen weggelassen werden.

GESTEINSKLASSE	UNTERKLASSEN	ENTSTEHUNGSPROZESSE	BEISPIELE AUS DEN SCHWEIZER ALPEN *WERDEN IN DIESEM ENVIROTOOL VORGESTELLT
Ablagerungs- oder Sedimentgesteine	Biogene Sedimentgesteine	Bildung fast immer im Meer, selten in Seen; Ablagerung von Kalkskeletten von Meeresorganismen (Mikroplankton, aber auch Muscheln, Schnecken, Korallen, etc.).	Hochgebirgskalk*, Schrattenkalk*, Radiolarit
	Klastische Sedimentgesteine	Ablagerung von Partikeln, die aus der Verwitterung von Gesteinen entstanden sind (z.B. Gerölle, Sandkörner, Tonpartikel).	Trias-Sandstein, Flysch-Sandstein, Molasse- Nagelfluh und -Sandstein , Tonstein und Tonschiefer
	Chemische Sedimentgesteine	Ausfällung gelöster Chemikalien in Wasser, meist Meerwasser.	Gips, Steinsalz, Dolomit, Höhlensinter (Stalaktiten)
Magmatische Gesteine	Plutonite	Langsame Auskristallisation von Magma in 5–50km Tiefe. Am häufigsten Granit, aber viele weitere Arten mit andern Mineralzusammensetzungen.	Zentraler Aaregranit*, Mont Blanc Granit*, Julier Granit, Bernina-Diorit, Bergeller Granit*
	Vulkanite	Austreten von Magma an die Erdoberfläche (auch unter dem Meeresspiegel!), fliessend oder explosiv	Metamorphe Ozeanboden-Basalte (Grüng- esteine) Rhyolith im Verrucano
Metamorphe Gesteine	Regionalmetamorphe Gesteine	Umwandlung grosser Gesteinsmassen bei Gebirgsbildungen in Tiefen ab rund 5 km und Temperaturen ab ca. 250°C	Weit verbreitet, z.B. Biotitgneise*, Granitgneise*, Glimmerschiefer, Amphibolite, Marmore, Quarzite
	Kontaktmetamorphe Gesteine	Umwandlung durch Hitze-Einwirkung um plutonische Intrusionen.	Selten, z.B. am Ostrand der Bergeller Intrusion

Die Gesteinsarten sind in vielfältiger Weise miteinander verbunden. So kann aus dem Zerfall eines Granits Sand- und Tonstein entstehen. Diese können später metamorph umgewandelt werden zu Quarzit und Glimmerschiefer, diese wiederum können sogar aufgeschmolzen werden zu Magma, das dann etwa in einem Vulkan an die Erdoberfläche gelangt und als Vulkanit erstarrt. Man spricht dabei von Gesteinskreisläufen.

4a Informationen über Gesteine und Gebiete – Sedimentgesteine

Das «Eindampfen» der grossen Gesteinsvielfalt auf die für Bergsteiger und Kletterer bedeutendsten Gesteinsarten führt zum Alpinen Gesteins-Trio: Kalkstein, Granit, Gneis. Hier die Infos zu den jeweils 3 Varietäten dieser Typen in den Schweizer Alpen (auch auf den Karten 5 und 6).

VARIETÄT	EIGENSCHAFTEN	ENTSTEHUNG	KLETTEREIGENSCHAFTEN	GEBIETE
JURA-KALKSTEIN GdS Nr. 7	 Sehr hell, fast weiss anwitternd, massig. Nur grob gebankt; oft kaum Schichtung. Bis 500 m mächtig. Fossilien: Korallen, Schnecken, Muscheln; Dinosaurierspuren. 	Ablagerung in der oberen Jurazeit vor 155–140 Mio. J. in flachen, tropischen Küstenmeeren des damaligen europäischen Kontinentalrandes.	Kompakt, kleingriffig, Reibung mittel, teilweise Löcherfels, komplexe Klettereien.	Praktisch alle Klettergebie- te des ganzen Jurabogens, inklusive des Tafeljuras.
HOCHGEBIRGS- KALK GdS Nr. 26/27	 Hell anwitternd, massig. Im frischen Bruch dunkelgrau, oft nach faulen Eiern stinkend (→ organisches Material). Nur sehr grob gebankt; oft kaum Schichtung. Bis 700 m mächtig. Fast keine Fossilien, im oberen Teil Korallen. Neigung zu schrattiger Erosion (mit Rillen und zerfressenen Partien). 	Ablagerung in der oberen Jurazeit vor 155–140 Mio. J. im meist mehreren 100 m tiefen Meer am SE-Rand des europäischen Kontinents. Man fasst zwei Gesteinsformatio- nen zu Hochgebirgskalk zusammen: Quintner- und Öhrlikalk.	Kompakt, oft scharfkantig, Reibung gut, manchmal Rinnenstrukturen oder Sintersäulen; Risse und Verschneidungen, in gut geschichteten Partien auch Dächer.	Bildet den ganzen hoch- alpinen «Alpenwall» vom Tödi bis zu den Dents du Midi. • Jegerstöcke, Gross Windgällen, Schlossberg, Spannörter, Titlis, Wendenstöcke, Engel- hörnder, Wetterhorn, Eiger, Grand Muveran.
SCHRATTENKALK GdS Nr. 30	Sehr hell, fast weiss anwitternd. Oft gut gebankt mit gut erkennbarer Schichtung. Bis 300 m mächtig. Kann stellenweise viel auffällige grosse Muscheln enthalten (sog. «Rudisten»).	Jünger als die beiden andern Kalksteine, abge- lagert in der Kreidezeit vor 130–120 Mio. J., im gleichen tropisch-war- men Meer am südlichen europäischen Kontinen- talrand. Neigt zu starker Schrattenbildung.	Meist sehr solide. Oft kompakt, scharfkan- tig – löchrig, je nach Lage der Schichtung entweder Platten, oder Rippen und Risse oder Überhänge und Dächer.	Bildet die Kletterberge der nördlichen Voralpen, u.a: • Alpstein, Churfirsten, Bockmattli, Pilatus, Hintisberg, Sanetsch, Miroir d'Argentine.

4b Informationen über Gesteine und Gebiete – magmatische Gesteine

VARIETÄT	EIGENSCHAFTEN	ENTSTEHUNG	KLETTEREIGENSCHAFTEN	GEBIETE
AAREGRANIT GdS Nr. 49	Im frischen Bruch hell weiss-grau, oft mit rotbrauner Patina (feiner rostartiger Überzug). Körnig, erkennbare Mineralien: grauer Quarz, weissliche bis grünliche Feldspäte, schwarzer bis schwarzgrüner Biotit. Oft massig-klotzig, partienweise aber bei Alpenbildung zu Gneis bis Schiefer deformiert. Diese Zonen bilden Couloirs und Scharten.	Vor der Alpenbildung, bei der vorletzten Gebirgs- bildung (→ variszische), durch langsames Auskris- tallisieren des Granitmag- mas in rund 10–20 km Krustentiefe vor 298 Mio. J. V.a. im Grimselgebiet starke Ausformung durch Gletscherschliff.	Wechselnd je nach Deformation und glazialer Bearbeitung; Von typisch blockigem (z.B. Hannibal, Furka) zu schuppig- plattigem (Salbit Süd) oder gletschergeschliffe- nem Granit. (Handegg, Eldorado).	Bietschhorn-Nesthorn Baltschieder Wiwanni Wannenhörner – Fieschertal Grimselgebiet Furkagebiet Göschenertäler Fellital, Cavardirasgebiet
MONT BLANC- GRANIT GdS Nr.48	 Im frischen Bruch hellgrau, oft mit starker rotbrauner Patina (→ Alpenglühen!). Grobkörniger als Aaregranit, erkennbare Mineralien: grauer bis hellbrauner Quarz, weissliche Feldspäte, schwarzer Biotit. Feldspäte oft als cm-grosse Klötzchen; zonenweise viele schwarze Diorit-Einschlüsse (= dunkles plutonisches Gestein). Massig-klotzig, oft mit starker Klüftung → rel. viel Steinschlag/Bergstürze infolge Klimaerwärmung. 	Vor der Alpenbildung, bei der vorletzten Gebirgs- bildung (→ variszische Gebirgsbildung). Bildung durch langsames Auskris- tallisieren des Granitmag- mas in rund 10–20 km Krustentiefe vor 305 Mio. J. Bildet höchstes Bergmas- siv der Alpen.	Rau und kompakt; Risse, Verschneidungen. In kompakten Wandpartien können auswitternde Feldspatklötzchen oder schwarze Dioritschollen («Chickenheads») Griffe / Tritte bieten.	Ganzes Mont Blanc Massiv Im schweizerischen Teil insbesondere die Gebiete Orny-Trient, Saleinaz, L'A Neuve
BERGELLER GRANIT GdS Nr.121	 Im frischen Bruch grau und stark gesprenkelt, oft mit brauner Patina. Der grobkörnigste der Alpengranite. Mineralien: grauer Quarz, weisse Feldspäte, schwarzer Biotit. Kalifeldspäte als bis 10 cm grosse Klötzchen; manchmal auch schwarze Diorit-Einschlüsse. Mit vielen hellen Gangspalten (sog. Aplite und Pegmatite). Oft mit starker Klüftung → auch grössere Bergstürze infolge Klimaerwärmung. 	Einziger Granit der Schweiz, der während, und nicht vor der Alpenbildung entstand, vor 30 Mio. J. Zu dieser Zeit riss die unter Afrika abtauchende euro- päisch-ozeanische Platte ab, wodurch plötzlich viel Wärme aus der Tiefe aufsteigen konnte.	Rau und kompakt; glatte Wandfluchten mit Rissen und Verschneidungen.	Gesamtes Massiv der Bergeller Berge südlich des Bergell-Tals, mit den Gruppen von E nach W: • Forno, Albigna, Sciora-Cengalo-Badile • Im Südteil Val di Mello

4c Informationen Gesteine und Gebiete – metamorphe Gesteine

VARIETÄT	EIGENSCHAFTEN	ENTSTEHUNG	KLETTEREIGENSCHAFTEN	GEBIETE
ERSTFELDER GNEIS GdS Nr. 40	 Immer mit lagiger Struktur: weisse lang-linsige Bänder wechseln mit dunkleren, Biotit-reichen Streifen. Spaltet in grobe Platten. Im frischen Bruch helles Gestein, meist mit brauner Patina und Landkartenflechten. Mittelkörnig, erkennbar: Quarz grau, Feldspat weiss, Dunkelglimmer (Biotit) schwarz bis grünschwarz. Glimmerplättchen in einer Ebene ± eingeregelt (→ Schieferung). 	Vor 450–400 Mio. J., anlässlich der vor-vorletzten Gebirgsbildung durch Metamorphose bei 600–650 °C aus tonigsandigen Sedimentgesteinen entstanden (→ «Paragneis»). Bei der Alpenbildung nur geringfügig beeinflusst.	Solides Klettergestein. Plattenschüsse, kleingrif- fige Wandstellen, auch Risse und Verschneidun- gen. In kompakten Partien granitähnlich.	Ca. 3 km breites Band von Erstfeld bis ins Gauli: • Erstfeldertal, Spannort-Gebiet (ohne Schlossberg → Hochgebirgskalk) • Sustenpassgebiet-Fünffingerstöcke • Vorderes Triftgebiet • Gauligebiet
TESSINER GNEISE GdS Nr. 79/82	 Eine Vielzahl einzelner Gneistypen laufen unter diesem Sammelbegriff; es gibt helle Granitgneise (→ Orthogneise) und dunklere, oft stark gebänderte Dunkelglimmergneise (Biotitgneise, → Paragneise). Mit meist deutlich ausgeprägter Schieferung → Platten; Granitgneise manchmal aber auch sehr kompakt und dann granitähnlich. Im Tessin werden diese Gneise oft einfach als «graniti» bezeichnet – was falsch ist. 	Granitgneise (Orthogneise): durch starke Metamorpho- se bei der Alpenbildung aus variszischen Graniten. Biotitgneise, Bänder- gneise (Paragneise): durch starke Metamorphose bei älteren Gebirgsbildungen, letzte Rekristallisation während der Alpenbildung (mehrfach metamorph → polymetamorph).	Sehr kompakte und solide Klettergesteine. Je nach Gneisart von plattig bis granitartig-massig. Leisten, Risse, Dächer verbreitet. Im unteren Maggiatal auch gletschergeschliffene Plattenschüsse.	Alle Klettergebiet des mittleren Tessins (Leven- tina, Riviera, Verzascatal, Maggiatal, Onsernonetal, Pedemonte, inkl. Boulder- gegbiete Cresciano und Chironico).
AROLLAGNEIS GdS Nr. 105	Sehr heterogenes Gestein, infolge höchst unterschiedlichen Graden von «Vergneisung» bei der Alpenbildung. Im frischen Bruch immer helles, grünliches Gestein, mit Gefüge von fast massig-granitartig bis zu fein gebändert gneisig. Meist mittelkörnig. Typisch sind die beiden grünen Mineralien Chlorit und Epidot (pistaziengrün).	Entstand als riesiger Granit- Körper wie Aare- und Mont Blanc-Granit bei der variszischen Gebirgsbil- dung, vor rund 290 Mio.J. Bei der Alpenbildung wurde er weitestgehend zu einem Gneis umgewan- delt, stellenweise aber fast verschont und dort noch granitartig.	Sehr gutes hochalpines Klettergestein, das schöne Grate bildet. Wandkletter- eien nicht immer sehr fest. In den wenig deformierten Bereichen granitähnliche Klettereien.	Ganze südliche Walliser Hochalpen, u.a. Weisshorn, Zinalrothorn, Obergabelhorn, Matterhorn, Dent d'Hérens, Dent Blanche, Pigne d'Arolla, Aig. de la Tsa, Mont Blanc de Cheilon, Mont Gelé.

4d Weitere Gesteine bekannter Klettergebiete der Schweiz

KLETTERGEBIETE	GESTEINSART	GDS NR	KURZBESCHREIBUNG	KLETTEREIGENSCHAFTEN
Bouldergebiet Lindentäli, Bärenfels Schwarzwasser- brücke (BE)		12	Sandstein aus den mittelländischen Molassebildungen der Tertiärzeit (30–10 Mio. J.). Weiche, grüngraue, körnige Sandsteine, manchmal mit einzelnen Kieselsteinen darin. Meist Flachmeer-Ablagerungen.	Gute Reibung, nicht sehr fest, bei Feuchtigkeit gerne etwas rutschig.
Gebiete Mittelland, z.B. Pont-la-Ville (FR), Riffenmatt (BE)	Nagelfluh (Konglomerat)	11	Versteinerte Flusskiese aus den Molasseablagerungen. Kieselgrössen bis über 10 cm. Verbindender Zement kalkig-sandig, meist leicht verwitterbar und deshalb insgesamt meist nicht sehr solides Gestein.	Sehr speziell, feingriffig und -trittig auf den runden, oft glatten Kieselsteinen («Eiertanz»).
Dorénaz (VS)	Vallorcine- Konglomerat	57	Eine Art Nagelfluh-Konglomerat, aber viel kompakter und härter, wechselnd mit hartem Sandstein → alte, voralpine Molasse aus der Karbonzeit (um 300 Mio. J.).	Kompakt, kleingriffig, sehr gute Reibung.
Leen, Neuhaus, Gämsgrätli (BE) etc.	Hohgant- Sandstein	34	Stark verfestigter und gut zementierter, im Meer abgelagerter Sandstein der älteren Tertiärzeit; bräunlich anwitternd, ziemlich hart und zäh.	Sehr griffig, kompakt, mit oft gerunde- ten und komplexen Griffstrukturen, sehr gute Reibung.
Paschga bei Flums (GR)	Kiesel-/Sand-/ Spatkalk /	24	Deutlich geschichteter, grauer Kieselkalk / Sandkalk, darüber bräunliche Schicht. Mit rund 175 Mio. J. (Liaszeit) älter als der Hochgebirgskalk.	Steil. Unruhig strukturiert, komplexe Griffe, mal gross, mal klein.
Bouldergebiete Kandersteg (BE)	Spatkalk Kieselkalkstein	28	Deutlich geschichtet im dm-Bereich, mit herauswitternden härteren Lagen → Quarzreichere Lagen. Ein Kalkstein mit hohem Quarzanteil. Abbau für Bahnschotter.	Sehr kompakte, an den herauswit- ternden Lagen feine Griffstrukturen, Reibung mittel.
Bramois bei Sion (VS)	Quarzit	28	Metamorpher Sandstein, leicht plattig wegen Glimmerlagen auf Schieferungs- flächen; aus der Triaszeit (um 240 Mio. J.).	Steile, kompakte, oft kleingriffige Kletterei, kalkstein-ähnlich; gute bis sehr gute Reibung.
Denti della Vecchia, TI)	Dolomit	62	Kalkstein-ähnliches Gestein, aber etwas härter und splittriger, sehr helle, fast weisse Anwitterung. Ablagerung der Triaszeit (um 230 Mio. J.).	Steile, feingriffige Kletterei, Reibung mittel.
Bernina-Gruppe (GR)	Diorit	108	Granit-ähnliches Gestein, aber recht feinkörnig, dunkel-hell gesprenkelt, da aus schwarzgrüner Hornblende und grünlichgelbem Calcium-Feldspat.	Granitähnlich.
Riffelhorn, Zermatter Breithorn (VS)	Serpentinit	102	Im frischen Bruch grünschwarz, oft unregelmässig schiefrig; Anwitterung rotbraun. Gestein des oberen Erdmantels, bei der Alpenbildung zu Serpentinit umgewandelt.	Kompakt, sehr rau, wenig klare Struktu- ren, kaum gute Risse.
Bouldergebiet Murgtal (SG)	Verrucano	88	Rotes Brekzien-Gestein mit wilder Mischung von hellen Komponenten in rötlicher Matrix. Entstanden vulkano-sedimentär aus Schlammstrom-Ablagerungen (Lahar) der Permzeit (um 280 Mio. J.).	Sehr kompakt, griffarm, athletisch, Reibung gut bis sehr gut.
Bouldergebiet Magic Woods (GR)	Rofna-Gneis	59	Diese Boulderblöcke sind Bergsturzablagerungen aus Gneis-Typen: Andeergneis, Andeergranit, Rofnagneis, Rofnagranit, Rofnaporphyr.	Kompakt, mit Rissen, viele Leisten und Auflegern, Fels meist feinkörnig und rau
Bouldergebiete und -blöcke im Mittelland	Findlinge	70	Findlinge sind Gesteinsbrocken, die von den Eiszeitgletschern aus den Alpen ins Mittelland transportiert wurden. Unter den orttypischen Gesteinen sind es «Exoten» aus dem Alpenraum.	Bouldergebiet St. Niklaus und Solothurn: Blöcke von Mont Blanc Granit / Boulder- gebiet Steinhof SO: Arolla-Gneise.

5a Jura-Kalkstein → GdS Nr. 7

EIGENSCHAFTEN	 Sehr hell, fast weiss anwitternd, massig. Nur grob gebankt; oft kaum Schichtung. Bis 500 m mächtig. Fossilien: Korallen, Schnecken, Muscheln; Dinosaurierspuren.
ENTSTEHUNG	Ablagerung in der oberen Jurazeit vor 155–140 Mio. J. in flachen, tropischen Küstenmeeren des damaligen europäischen Kontinentalrandes.
KLETTEREIGENSCHAFTEN	Kompakt, kleingriffig, Reibung mittel, teilweise Löcherfels, komplexe Klettereien Meist sehr solide.
GEBIETE	Praktisch alle Klettergebiete des ganzen Jurabogens, inklusive des Tafeljuras.
FOTO LINKS	Frische Bruchfläche von dichtem Jurakalkstein mit der typisch hellen Ockerfarbe.
FOTO RECHTS	An der Balmfluh ob Solothurn; das gleiche Gestein mit der typischen sehr hellen Anwitterungsfarbe.

5b Hochgebirgskalk → GdS Nr. 26/27

EIGENSCHAFTEN	 Hell anwitternd, massig. Im frischen Bruch dunkelgrau, oft nach faulen Eiern stinkend (→ organisches Material). Nur sehr grob gebankt; oft kaum Schichtung. Bis 700 m mächtig. Fast keine Fossilien, im oberen Teil Korallen. Neigung zu «schrattiger» Erosion (mit Rillen und zerfressenen Partien).
ENTSTEHUNG	Ablagerung in der oberen Jurazeit vor 155–140 Mio. J. im meist mehreren 100 m tiefen Meer am SE-Rand des europäischen Kontinents. Man fasst zwei Gesteinsformationen zu Hochgebirgskalk zusammen: Quintner- und Öhrlikalk.
KLETTEREIGENSCHAFTEN	Kompakt, oft scharfkantig, Reibung gut, manchmal Rinnenstrukturen oder Sintersäulen; Risse und Verschneidungen, in gut geschichteten Partien auch Dächer. Meist sehr solide.
GEBIETE	Bildet den ganzen hochalpinen «Alpenwall» vom Tödi bis zu den Dents du Midi. • Jegerstöcke, Gross Windgällen, Schlossberg, Spannörter, Titlis, Wendenstöcke, Engelhörnder, Wetterhorn, Eiger, Grand Muveran.
FOTO LINKS	Schuttblöcke aus Hochgebirgskalk, hinteres Lauterbrunner Tal.
FOTO RECHTS	Klettern im Hochgebirgskalk von Ueschenen ob Kandersteg.

5c Schrattenkalk → GdS Nr. 30

EIGENSCHAFTEN	 Sehr hell, fast weiss anwitternd. Oft gut gebankt mit gut erkennbarer Schichtung. Bis 300 m mächtig. Kann stellenweise viel auffällige grosse Muscheln enthalten (sog. «Rudisten»).
ENTSTEHUNG	Jünger als die beiden anderen Kalksteine, abgelagert in der Kreidezeit vor 130–120 Mio. J., im gleichen tropisch-warmen Meer am südlichen europäischen Kontinentalrand. Neigt zu starker Schrattenbildung.
KLETTEREIGENSCHAFTEN	Oft kompakt, scharfkantig – löchrig, je nach Lage der Schichtung entweder Platten, oder Rippen und Risse oder Überhänge und Dächer. Meist sehr solide.
GEBIETE	Bildet die Kletterberge der nördlichen Voralpen, u.a. • Alpstein, Churfirsten, Bockmattli, Pilatus, Hintisberg, Sanetsch, Miroir d'Argentine
FOTO LINKS	Frischer Bruch im massigem Schrattenkalk.
FOTO RECHTS	Grosser Sturzblock am Hohgant (BE) mit typischen «Schratten».

5d Aaregranit → GdS Nr. 49

EIGENSCHAFTEN	 Im frischen Bruch hell weiss-grau, oft mit rotbrauner Patina (feiner rostartiger Überzug). Körnig, erkennbare Mineralien: grauer Quarz, weissliche bis grünliche Feldspäte, schwarzer bis schwarzgrüner Biotit. Oft massig-klotzig, partienweise aber bei Alpenbildung zu Gneis bis Schiefer deformiert. Diese Zonen bilden Couloirs und Scharten. 	
ENTSTEHUNG	Vor der Alpenbildung, bei der vorletzten Gebirgsbildung (→ variszische Gebirgsbildung). Bildung durch langsames Auskristallisieren des Granitmagmas in rund 10–20 km Krustentiefe vor 298 Mio. J. V.a. im Grimselgebiet starke Ausformung durch Gletscherschliff.	
KLETTEREIGENSCHAFTEN	Wechselnd je nach Deformation und glazialer Bearbeitung; Von typisch blockigem (z.B. Hannibal, Furka) zu schuppig-plattigem (Salbit Süd) oder gletschergeschliffem Granit (Handegg, Eldorado).	
GEBIETE	 Bietschhorn-Nesthorn Baltschieder Wiwanni Wannenhörner – Fieschertal Grimselgebiet Furkagebiet Göschenertäler Fellital, Cavardirasgebiet 	
FOTO LINKS	Makroaufnahme von frischem Aaregranit vom Grimselgebiet.	
FOTO RECHTS	Typische Kletterei im Aaregranit, Westgrat Salbitschijen, Gipfelaufschwung.	

5e Mont Blanc-Granit → GdS Nr. 48

EIGENSCHAFTEN	 Im frischen Bruch hellgrau, oft mit starker rotbrauner Patina (→ Alpenglühen!). Grobkörniger als Aaregranit, erkennbare Mineralien: grauer bis hellbrauner Quarz, weissliche Feldspäte, schwarzer Biotit. Feldspäte oft als cm-grosse Klötzchen; zonenweise viele schwarze Diorit-Einschlüsse (=dunkles plutonisches Gestein). Massig-klotzig, oft mit starker Klüftung → rel. viel Steinschlag/Bergstürze infolge Klimaerwärmung.
ENTSTEHUNG	Vor der Alpenbildung, bei der vorletzten Gebirgsbildung (→ variszische Gebirgsbildung). Analog Aaregranit. Bildung durch langsames Auskristallisieren des Granitmagmas in rund 10–20 km Krustentiefe vor 305 Mio. J. Bildet höchstes Bergmassiv der Alpen.
KLETTEREIGENSCHAFTEN	Rau und kompakt; Risse, Verschneidungen. In kompakten Wandpartien können auswitternde Feldspatklötzchen oder schwarze Dioritschollen («Chickenheads») Griffe / Tritte bieten.
GEBIETE	 Ganzes Mont Blanc Massiv. Im schweizerischen Teil insbesondere die Gebiete Orny-Trient, Saleinaz, L'A Neuve.
FOTO LINKS	Makrofoto von frischem Mont Blanc-Granit.
FOTO RECHTS	Berühmte Rébuffat-Route an der Südwand der Aiguille du Midi. Für Mont-Blanc-Granit typisch: blockige Struktur, rötliche Patina und dunkle Diorit-Einschlüsse («Chickenheads»). Foto: Lucie Wiget

5f Bergeller Granit → GdS Nr. 101

EIGENSCHAFTEN	 Im frischen Bruch grau und stark gesprenkelt, oft mit brauner Patina. Der grobkörnigste der Alpengranite. Mineralien: grauer Quarz, weisse Feldspäte, schwarzer Biotit. Kalifeldspäte als bis 10 cm grosse Klötzchen; manchmal auch schwarze Diorit-Einschlüsse. Mit vielen hellen Gangspalten (sog. Aplite und Pegmatite). Oft mit starker Klüftung → auch grössere Bergstürze infolge Klimaerwärmung.
ENTSTEHUNG	Einziger Granit der Schweiz, der während, und nicht vor der Alpenbildung entstand, vor 30 Mio. J. Zu dieser Zeit riss die unter Afrika abtauchende europäisch-ozeanische Platte ab, wodurch plötzlich viel Wärme aus der Tiefe aufsteigen konnte.
KLETTEREIGENSCHAFTEN	Rau und kompakt; glatte Wandfluchten mit Rissen und Verschneidungen.
GEBIETE	Gesamtes Massiv der Bergeller Berge südlich des Bergell-Tals, mit den Gruppen von E nach W: • Forno, Albigna, Sciora-Cengalo-Badile • Im Südteil Val di Mello
FOTO LINKS	Ausschnitt ca. 50 cm hoch im Bergeller Granit, Val Forno GR.
FOTO RECHTS	Kraxeln im Bergeller Granit mit seinen typischen grossen weissen Feldspatkristallen und Ganggesteinen.

5g Erstfelder Gneis → GdS Nr. 40

EIGENSCHAFTEN	 Immer mit lagiger Struktur: weisse langlinsige Bänder wechseln mit dunkleren, biotitreichen Streifen. Spaltet in grobe Platten. Im frischen Bruch helles Gestein, meist mit brauner Patina und Landkartenflechten. Mittelkörnig, erkennbare Mineralien Quarz grau, Feldspat weiss, Dunkelglimmer (Biotit) schwarz bis grünschwarz. Glimmerplättchen in einer Ebene ± eingeregelt (→ Schieferung).
ENTSTEHUNG	Vor 450–400 Mio. J., anlässlich der vor-vorletzten Gebirgsbildung durch Metamorphose bei 600–650 °C aus tonigsandigen Sedimentgesteinen entstanden (→ «Paragneis»). Bei der Alpenbildung nur geringfügig beeinflusst.
KLETTEREIGENSCHAFTEN	Solides Klettergestein. Plattenschüsse, kleingriffige Wandstellen, auch Risse und Verschneidungen. In kompakten Partien granitähnlich.
GEBIETE	 Ca. 3 km breites Band von Erstfeld bis ins Gauli: Erstfeldertal, Spannort-Gebiet (ohne Schlossberg → Hochgebirgskalk) Sustenpassgebiet-Fünffingerstöcke Vorderes Triftgebiet Gauligebiet
FOTO LINKS	Makroaufnahme massiger Erstfelder Gneis vom Sustenpass.
FOTO RECHTS	Aufschluss im Erstfelder Gneis am Krönten UR.

5h Tessiner Gneise → GdS Nr. 79/82

EIGENSCHAFTEN	 Eine Vielzahl einzelner Gneistypen laufen unter diesem Sammelbegriff; es gibt helle Granitgneise (→ Orthogneise) und dunklere, oft stark gebänderte Dunkelglimmergneise (Biotitgneise → Paragneise). Mit meist deutlich ausgeprägter Schieferung → Platten; Granitgneise manchmal aber auch sehr kompakt und dann granitähnlich. Im Tessin werden diese Gneise oft einfach als «graniti» bezeichnet – was falsch ist.
ENTSTEHUNG	Granitgneise (Orthogneise): durch starke Metamorphose bei der Alpenbildung aus variszischen Graniten. Biotitgneise, Bänderngneise (Paragneise): durch starke Metamorphose bei älteren Gebirgsbildungen, letzte Rekristallisation während der Alpenbildung (mehrfach metamorph → polymetamorph).
KLETTEREIGENSCHAFTEN	Sehr kompakte und solide Klettergesteine. Je nach Gneisart von plattig bis granitartig-massig. Leisten, Risse, Dächer verbreitet. Im unteren Maggiatal auch gletschergeschliffene Plattenschüsse.
GEBIETE	• Alle Klettergebiet des mittleren Tessins (Leventina, Riviera, Verzascatal, Maggiatal, Onsernonetal, Pedemonte)
FOTO LINKS	Makroaufnahme von Biotit-reichem Tessiner Gneis, Val Verzasca.
FOTO RECHTS	Vom Wasser glattgeschliffene Gneise bei Lavertezzo im Verzascatal. Hier handelt es sich um «Paragneise» (aus ehemaligen Sedimenten entstanden).

5i Arollagneis → GdS Nr. 105

EIGENSCHAFTEN	 Sehr heterogenes Gestein, infolge höchst unterschiedlichen Graden von «Vergneisung» bei der Alpenbildung. Im frischen Bruch immer helles, grünliches Gestein, mit Gefüge von fast massig-granitartig bis zu fein gebändert gneisig. Meist mittelkörnig. Typisch sind die beiden grünen Mineralien Chlorit und Epidot (pistaziengrün).
ENTSTEHUNG	Entstand als riesiger Granit-Körper wie Aare- und Mont Blanc-Granit bei der variszischen Gebirgsbildung, vor rund 290 Mio. J. Bei der Alpenbildung wurde er weitestgehend zu einem Gneis umgewandelt, stellenweise aber fast verschont und dort noch granitartig.
KLETTEREIGENSCHAFTEN	Sehr gutes hochalpines Klettergestein, das schöne Grate bildet. Wandklettereien nicht immer sehr fest. In den wenig deformierten Bereichen granitähnliche Klettereien.
GEBIETE	• Ganze südliche Walliser Hochalpen, u.a. Weisshorn, Zinalrothorn, Obergabelhorn, Matterhorn, Dent d'Hérens, Dent Blanche, Pigne d'Arolla, Aig. de la Tsa, Mont Blanc de Cheilon, Mont Gelé.
FOTO LINKS	Ca. 30 cm hoher Ausschnitt aus typischem Arollagneis.
FOTO RECHTS	Am Hörnligrat am Matterhorn mit typisch grünlichem Arollagneis und dunkelgrünen Chlorit-Kluftflächen. Im Hintergrund Zinalrothorn aus Arollagneis.

6a Jura-Kalkstein → GdS Nr. 7

EIGENSCHAFTEN	 Sehr hell, fast weiss anwitternd, massig. Nur grob gebankt; oft kaum Schichtung. Bis 500 m mächtig. Fossilien: Korallen, Schnecken, Muscheln; Dinosaurierspuren.
ENTSTEHUNG	Ablagerung in der oberen Jurazeit vor 155–140 Mio. J. in flachen, tropischen Küstenmeeren des damaligen europäischen Kontinentalrandes.
KLETTEREIGENSCHAFTEN	Kompakt, kleingriffig, Reibung mittel, teilweise Löcherfels, komplexe Klettereien. Meist sehr solide.
GEBIETE	Praktisch alle Klettergebiete des ganzen Jurabogens, inklusive des Tafeljuras.
FOTO GEBIET	Roggenfluh in der Klus von Balsthal mit dem klassischen Pfeiler, im Jurakalkstein.

6b Hochgebirgskalk → GdS Nr. 26/27

EIGENSCHAFTEN • Hell anwitternd, massig. Im frischen Bruch dunkelgrau, oft nach faulen Eiern stinkend (→ organisches Material). Nur sehr grob gebankt; oft kaum Schichtung. • Bis 700 m mächtig. • Fast keine Fossilien, im oberen Teil Korallen. • Neigung zu» schrattiger» Erosion (mit Rillen und zerfressenen Partien). **ENTSTEHUNG** Ablagerung in der oberen Jurazeit vor 155–140 Mio. J. im meist mehreren 100 m tiefen Meer am SE-Rand des europäischen Kontinents. Man fasst zwei Gesteinsformationen zu Hochgebirgskalk zusammen: Quintnerund Öhrlikalk KLETTEREIGENSCHAFTEN Kompakt, oft scharfkantig, Reibung gut, manchmal Rinnenstrukturen oder Sintersäulen; Risse und Verschneidungen, in gut geschichteten Partien auch Dächer. Meist sehr solide. Bildet den ganzen hochalpinen «Alpenwall» vom Tödi bis zu den Dents du Midi. GEBIETE • Jegerstöcke, Gross Windgällen, Schlossberg, Spannörter, Titlis, Wendenstöcke, Engelhörnder, Wetterhorn, Eiger, Grand Muveran,

FOTO GEBIET

Die Wendenstöcke von der Sustenstrasse aus – modernes alpines Kletter-Eldorado im Hochgebirgskalk. Die bräunliche Schicht im Gipfelbereich = Hogant-Sandstein. Vordergrund: Erstfelder Gneise.

6c Schrattenkalk → GdS Nr. 30

EIGENSCHAFTEN	 Sehr hell, fast weiss anwitternd. Oft gut gebankt mit gut erkennbarer Schichtung. Bis 300 m mächtig. Kann stellenweise viel auffällige grosse Muscheln enthalten (sog. «Rudisten»).
ENTSTEHUNG	Jünger als die beiden anderen Kalksteine, abgelagert in der Kreidezeit vor 130–120 Mio. J., im gleichen tropisch-warmen Meer am südlichen europäischen Kontinentalrand. Neigt zu starker Schrattenbildung.
KLETTEREIGENSCHAFTEN	Oft kompakt, scharfkantig – löchrig, je nach Lage der Schichtung entweder Platten, oder Rippen und Risse oder Überhänge und Dächer. Meist sehr solide.
GEBIETE	Bildet die Kletterberge der nördlichen Voralpen, u.a. • Alpstein, Churfirsten, Bockmattli, Pilatus, Hintisberg, Sanetsch, Miroir d'Argentine
FOTO GEBIET	Der Wildhuser Schafberg im Alpstein mit seinen zahlreichen Kletterrouten in der steilen Schrattenkalk-Schichtplatte.

6d Aaregranit → GdS Nr. 49

EIGENSCHAFTEN

- Im frischen Bruch hell weiss-grau, oft mit rotbrauner Patina (feiner rostartiger Überzua).
- Körnig, erkennbare Mineralien: grauer Quarz, weissliche bis grünliche Feldspäte, schwarzer bis schwarzgrüner Biotit.
- Oft massig-klotzig, partienweise aber bei Alpenbildung zu Gneis bis Schiefer deformiert. Diese Zonen bilden Couloirs und Scharten.

ENTSTEHUNG

Vor der Alpenbildung, bei der vorletzten Gebirgsbildung (→ variszische Gebirgsbildung). Bildung durch langsames Auskristallisieren des Granitmagmas in rund 10-20 km Krusten tiefe vor 298 Mio. J. V.a. im Grimselgebiet starke Ausformung durch Gletscherschliff

KLETTEREIGENSCHAFTEN Wechselnd je nach Deformation und glazialer Bearbeitung; Von typisch blockigem (z.B. Hannibal, Furka) zu schuppig-plattigem (Salbit Süd) oder gletschergeschliffem Granit (Handegg, Eldorado).

GEBIETE

- Bietschhorn-Nesthorn
- Baltschieder
- Wiwanni
- Wannenhörner Fieschertal

- Grimselgebiet
- Furkagebiet
- Göschenertäler
- Fellital, Cavardirasgebiet

FOTO GEBIET

Aussicht vom Juchlistock (Grimsel) nach W zum Brunberg. Die steil stehende leichte alpine Schieferung im Aaregranit ist gut erkennbar.

6e Mont Blanc-Granit → GdS Nr. 48

EIGENSCHAFTEN	 Im frischen Bruch hellgrau, oft mit starker rotbrauner Patina (→ Alpenglühen!). Grobkörniger als Aaregranit, erkennbare Mineralien: grauer bis hellbrauner Quarz, weissliche Feldspäte, schwarzer Biotit. Feldspäte oft als cm-grosse Klötzchen; zonenweise viele schwarze Diorit-Einschlüsse (=dunkles plutonisches Gestein). Massig-klotzig, oft mit starker Klüftung → rel. viel Steinschlag/Bergstürze infolge Klimaerwärmung.
ENTSTEHUNG	Vor der Alpenbildung, bei der vorletzten Gebirgsbildung (→ variszische Gebirgsbildung). Bildung durch langsames Auskristallisieren des Granitmagmas in rund 10–20 km Krustentiefe vor 305 Mio. J. Bildet höchstes Bergmassiv der Alpen.
KLETTEREIGENSCHAFTEN	Rau und kompakt; Risse, Verschneidungen. In kompakten Wandpartien können auswitternde Feldspatklötzchen oder schwarze Dioritschollen («Chickenheads») Griffe / Tritte bieten.
GEBIETE	 Ganzes Mont Blanc Massiv Im schweizerischen Teil insbesondere die Gebiete Orny-Trient, Saleinaz, L'A Neuve.
FOTO GEBIET	Blick von Saleinaz-Hütte nach W zu Aig. d'Argentière, Aig. du Chardonnet und Grande Fourche.

6f Bergeller Granit → GdS Nr. 101

EIGENSCHAFTEN • Im frischen Bruch grau und stark gesprenkelt, oft mit brauner Patina. • Der grobkörnigste der Alpengranite. Mineralien: grauer Quarz, weisse Feldspäte, schwarzer Biotit. Kalifeldspäte als bis 10 cm grosse Klötzchen; manchmal auch schwarze Diorit-Finschlüsse Mit vielen hellen Gangspalten (sog. Aplite und Pegmatite). Oft mit starker Klüftung → auch grössere Bergstürze infolge Klimaerwärmung. Einziger Granit der Schweiz, der während, und nicht vor der Alpenbildung entstand, ENTSTEHUNG vor 30 Mio. J. Zu dieser Zeit riss die unter Afrika abtauchende europäisch-ozeanische Platte ab. wodurch plötzlich viel Wärme aus der Tiefe aufsteigen konnte. KLETTEREIGENSCHAFTEN Rau und kompakt; glatte Wandfluchten mit Rissen und Verschneidungen. GEBIETE Gesamtes Massiv der Bergeller Berge südlich des Bergell-Tals, mit den Gruppen von E nach W: Forno, Albigna, Sciora-Cengalo-Badile Im Südteil Val di Mello **FOTO GEBIET** Blick von Osten auf die Scioragruppe mit ihren typischen blockigen Granitstrukturen

und Kluftflächen; im Hintergrund die Berninagruppe.

6g Erstfelder Gneis → GdS Nr. 40

EIGENSCHAFTEN	 Immer mit lagiger Struktur: weisse langlinsige Bänder wechseln mit dunkleren, biotitreichen Streifen. Spaltet in grobe Platten. Im frischen Bruch helles Gestein, meist mit brauner Patina und Landkartenflechten. Mittelkörnig, erkennbare Mineralien Quarz grau, Feldspat weiss, Dunkelglimmer (Biotit) schwarz bis grünschwarz. Glimmerplättchen in einer Ebene ± eingeregelt (→ Schieferung).
ENTSTEHUNG	Vor 450–400 Mio. J., anlässlich der vor-vorletzten Gebirgsbildung durch Metamorphose bei 600–650 °C aus tonigsandigen Sedimentgesteinen entstanden (→ «Paragneis»). Bei der Alpenbildung nur geringfügig beeinflusst.
KLETTEREIGENSCHAFTEN	Solides Klettergestein. Plattenschüsse, kleingriffige Wandstellen, auch Risse und Verschneidungen. In kompakten Partien granitähnlich.
GEBIETE	 Ca. 3 km breites Band von Erstfeld bis ins Gauli: • Erstfeldertal, Spannort-Gebiet (ohne Schlossberg → Hochgebirgskalk) • Sustenpassgebiet-Fünffingerstöcke • Vorderes Triftgebiet • Gauligebiet
FOTO GEBIET	Der bekannte Kletterberg Pfriendler am Sustenpass, in massivem, fast granitartigen Erstfeldergneis.

6h Tessiner Gneise → GdS Nr. 79/82

EIGENSCHAFTEN	 Eine Vielzahl einzelner Gneistypen laufen unter diesem Sammelbegriff; es gibt helle Granitgneise (→ Orthogneise) und dunklere, oft stark gebänderte Dunkelglimmergneise (Biotitgneise, → Paragneise). Mit meist deutlich ausgeprägter Schieferung → Platten; Granitgneise manchmal aber auch sehr kompakt und dann granitähnlich. Im Tessin werden diese Gneise oft einfach als «graniti» bezeichnet – was falsch ist.
ENTSTEHUNG	Granitgneise (Orthogneise): durch starke Metamorphose bei der Alpenbildung aus variszischen Graniten. Biotitgneise, Bänderngneise (Paragneise): durch starke Metamorphose bei älteren Gebirgsbildungen, letzte Rekristallisation während der Alpenbildung (mehrfach metamorph → polymetamorph).
KLETTEREIGENSCHAFTEN	Sehr kompakte und solide Klettergesteine. Je nach Gneisart von plattig bis granitartigmassig. Leisten, Risse, Dächer verbreitet. Im unteren Maggiatal auch gletschergeschliffene Plattenschüsse.
GEBIETE	Alle Klettergebiet des mittleren Tessins (Leventina, Riviera, Verzascatal, Maggiatal, Onsernonetal, Pedemonte).
FOTO GEBIET	Der Poncione della Marcia (2454m) im Verzascatal mit seinen typischen Gneis-Wänden

6i Arollagneis → GdS Nr. 105

EIGENSCHAFTEN	 Sehr heterogenes Gestein, infolge höchst unterschiedlichen Graden von «Vergneisung» bei der Alpenbildung. Im frischen Bruch immer helles, grünliches Gestein, mit Gefüge von fast massiggranitartig bis zu fein gebändert gneisig. Meist mittelkörnig. Typisch sind die beiden grünen Mineralien Chlorit und Epidot (pistaziengrün).
ENTSTEHUNG	Entstand als riesiger Granit-Körper wie Aare- und Mont Blanc-Granit bei der variszischen Gebirgsbildung, vor rund 290 Mio. J. Bei der Alpenbildung wurde er weitestgehend zu einem Gneis umgewandelt, stellenweise aber fast verschont und dort noch granitartig.
KLETTEREIGENSCHAFTEN	Sehr gutes hochalpines Klettergestein, das schöne Grate bildet. Wandklettereien nicht immer sehr fest. In den wenig deformierten Bereichen granitähnliche Klettereien.
GEBIETE	Ganze südliche Walliser Hochalpen, u.a. Weisshorn, Zinalrothorn, Obergabelhorn, Matterhorn, Dent d'Hérens, Dent Blanche, Pigne d'Arolla, Aig. de la Tsa, Mont Blanc de Cheilon, Mont Gelé.
FOTO GEBIET	Blick von den Aig. Rouges d'Arolla nach E zu Grand Coriner, Obergabelhorn und Dent Blanche – alles aus Arollagneis.

7 Was weisst Du über die Klettergesteine?

Ein kleines Quiz zum gemeinsamen Knobeln oder fröhlichen Raten!

Bitte nur mit Bleistift ausfüllen und nach der Übung wieder ausradieren. Dieses Blatt ist wiederverwendbar.

NR	FRAGE	JA	NEIN
1	Gneis ist immer ein metamorphes Gestein.		
2	Kalksteine werden ausschliesslich in Flachmeeren gebildet.		
3	Die gelbgrünen Landkartenflechten wachsen nie auf Kalkstein.		
_4	Granit ist viel verwitterungsresistenter als Kalkstein.		
5	Der Bergeller Granit nimmt unter den Alpengraniten eine Sonderstellung ein.		
6	Granite als «Urgesteine» sind immer sehr alt.		
7	Kalksteine entstehen durch chemische Ausfällung von Calciumkarbonat im Meer (ähnlich wie die Kalkablagerungen in Wasserkochern o.ä.).		
8	Metamorpher Kalkstein heisst Marmor.		
9	In Kalksteinen kann man zuweilen versteinerte Dino-Knochen finden.		
10	Recht viele Gneise der Alpen entstanden aus Sedimentgesteinen.		
11	Alle Kalksteine der Alpen stammen aus der Jurazeit (201–145 Mio. J.).		
12	Aus Granit kann auch Gneis entstehen.		
13	Aus Gneis kann auch Granit entstehen.		
14	Die Gneise der Alpen entstanden durch Metamorphose bei der Alpenbildung.		
15	Kalkstein besteht aus dem Mineral Calcit.		
16	Dolomit ist ein eisenhaltiger Kalkstein.		
17	Wenn Granitmagma in einem Vulkan an die Erdoberfläche gelangt, heisst das Vulkangestein Basalt.		
18	Gneis unterscheidet sich von Granit durch seine Schichtung.		

8 Lösungskarte Quiz

Was weisst Du über die Klettergesteine? Antworten:

NR	FRAGE	JA	NEIN	ERLÄUTERUNG
1	Gneis ist immer ein metamorphes Gestein.	×		Ja, definitionsgemäss, und zwar ein hoch metamorphes Gestein, das bei Temperaturen von 500–700°C in Tiefen von 20 km und mehr gebildet wird.
2	Kalksteine werden ausschliesslich in Flachmeeren gebildet.		×	Viele Kalksteine werden in flachem Meer gebildet, aber es gibt auch Kalksteine aus mittlerer bis grosser Meeres- tiefe. Der Schrattenkalk ist eine Flachmeer-Bildung, der Hochgebirgskalk stammt grösstenteils aus Meerestiefen von einigen Hundert Metern.
3	Die gelbgrünen Landkarten- flechten wachsen nie auf Kalkstein.	×		Landkartenflechten gedeihen nur auf so genannt «sau- ren» Gesteinen, das sind solche die viel Quarz und/oder Feldspat enthalten, bei deren Verwitterung Kieselsäure frei wird.
4	Granit ist viel verwitterungs- resistenter als Kalkstein.		×	Es kommt darauf an! Kalkstein wird zwar leicht von Regenwasser angegriffen, der Granit kaum. Dafür ist die physikalische Verwitterung beim Granit bedeutsam; in tropischen Klimata verwittert Granit zudem sehr stark durch Vertonung der Feldspäte.
5	Der Bergeller Granit nimmt unter den Alpengraniten eine Sonderstellung ein.	×		Der Bergeller Granit ist der einzige Granit der Schweiz, der während der Alpenbildung entstand, vor rund 30 Mio. J Alle anderen Granite wurden bei der vorletzten Gebirgsbildung, der variszischen, vor rund 290–350 Mio. J. gebildet.
6	Granite als «Urgesteine» sind immer sehr alt.		×	Der Begriff «Ur» sollte aus der Geologie verbannt werden. Gesteine entstanden seit der Frühzeit der Erdgeschichte bis heute. Es gibt uralte und sehr junge Granite – z.B. diejenigen von Patagonien. Heute entste- hen Granite im tieferen Untergrund laufend weiter.
7	Kalksteine entstehen durch chemische Ausfällung von Calciumkarbonat im Meer (ähnlich der Kalkablage- rungen in Wasserkochern).		×	Fast nie; die meisten Kalksteine sind aus Calciumkar- bonat aufgebaut, das von Meereslebewesen durch biochemische Prozesse als Skelette und Schalen gebildet wurden (z.B. Mikroplankton wie Foraminiferen; oder Korallen, Muscheln, Ammoniten etc.)
8	Metamorpher Kalkstein heisst Marmor.	×		Bei erhöhten Temperaturen bilden sich in Kalksteinen keine neuen metamorphen Mineralien, weil nur Calcit vorhanden ist. Dieser rekristallisiert zu einem gröberen, kristallinen Gefüge – ähnlich wie aus Schnee zuerst Firn und dann Gletschereis wird.
9	In Kalksteinen kann man zuweilen versteinerte Dino-Knochen finden.		×	In Kalksteinen lassen sich versteinerte Knochen mariner Saurierarten finden. Aber keine von Dinosaurier, da diese Landbewohner waren. In lagunären Flachwasser- kalken findet man jedoch Fussabdrücke von Dinos, z.B. bei Emosson (VS) oder Lommiswil (SO).

NR	FRAGE	JA	NEIN	ERLÄUTERUNG
10	Recht viele Gneise der Alpen entstanden aus Sediment- gesteinen.	×		Gneise können aus Sedimentgesteinen oder aus plutonischen Gesteinen (v.a. Graniten) entstehen, erstere nennt man Para-, die zweiten Orthogneise. Glimmerreiche und stark geschieferte Gneise entstanden meist aus Sedimentgesteinen (z.B. die plattigen Tessiner Gneise, die für Pergolas etc. verwendet werden)
11	Alle Kalksteine der Alpen stammen aus der Jurazeit (201–145 Mio. J.).		×	Nur der Hochgebirgskalk stammt aus der Jurazeit. Der jüngere Schrattenkalk stammt aus der Kreidezeit; Kalk- steine gibt es seit rund 3000 Mio.J., wobei erst ab rund 500 Mio.J. grössere Mengen gebildet wurden.
12	Aus Granit kann auch Gneis entstehen.	×		Ein sehr häufiger Fall. Die grossen Orthogneis-Massen der Alpen (z.B. Arollagneis, viele der massigen Tessiner Gneise, Antigorio-, Monte Leone-Gneise) sind bei der Metamorphose während der Alpenbildung aus älteren Graniten entstanden.
13	Aus Gneis kann auch Granit entstehen.	×		Wenn Gneise – sowohl Ortho als auch Paragneise – auf Temperaturen von 650 °C und mehr aufgeheizt werden, beginnen sie aufzuschmelzen; die ersten Schmelzen haben granitische Zusammensetzung, können wegwan- dern und als neue Granite erstarren.
14	Die Gneise der Alpen entstanden durch Metamorphose bei der Alpenbildung.		×	Viele, aber nicht alle. In den Zonen der Alpen, wo die alpine Metamorphose nicht so stark war, dass Gneise entstehen konnten, trifft man auch auf ältere Gneise, etwa die Erstfelder Gneise. Sie entstanden bei den vor- oder gar vor-vorletzten Gebirgsbildungen.
15	Kalkstein besteht aus dem Mineral Calcit.	×		Der Chemiker sagt zur chemischen Verbindung CaCO ₃ Calciumkarbonat, der Mineraloge sagt ihm Calcit oder Kalkspat, und Gesteine, die daraus bestehen, nennt der Geologe Kalkstein.
16	Dolomit ist ein eisenhaltiger Kalkstein.		×	Im Dolomit ist die Hälfte des Calciums Ca durch Mag- nesium Mg ersetzt. In den Küstenbereichen der Tropen wird der Karbonatschlamm durch Mg-reiche Porenwäs- ser in Dolomit umgewandelt. Dolomit ist also immer eine Küstenablagerung.
17	Wenn Granitmagma in einem Vulkan an die Erdoberfläche gelangt, heisst das Vulkangestein Basalt.		×	Das vulkanische Äquivalent von Granit heisst Rhyolith. Dieses Vulkangestein ist relativ selten, weil Granitmagma sehr zähflüssig ist und meist in der Erdkruste stecken bleibt und langsam zu Granit erstarrt. Basaltmagma ist viel dünnflüssiger, und gelangt meist bis an die Erdober- fläche. Das plutonische Gestein dazu heisst Gabbro.
18	Gneis unterscheidet sich von Granit durch seine Schichtung.		×	Die planare Struktur der Gneise ist nicht eine Schichtung, sondern eine Schieferung – und das ist ein Hauptunterschied von Granit und Gneis. Mehr dazu auf Karte 9.

9 Schichtung oder Schieferung?

OFT SO ÄHNLICH UND DOCH SO UNTERSCHIEDLICH!

Sieht ein Bergsteiger an einem Block, an einer Felswand, an einem Berg planare Strukturen, plattig spaltenden Fels oder treppenartige Stufungen, so redet er in der Regel von «Schichtung». Doch es sind zwei grundsätzlich unterschiedliche Prozesse, welche planare Strukturen hervorbringen.

SCHICHTUNG

ist eine **sedimentäre Ablagerungsstruktur**. Durch **Wechsel in der Ablagerung**, z.B. infolge Klimawandel oder veränderter Materialzufuhr von Flüssen ins Meer entstehen Schichtfugen oder Abfolgen unterschiedlich zusammengesetzter Gesteine. **Schichtungen liegen ursprünglich horizontal**. Werden sie steil stehend angetroffen, wurden die Gesteine nach der Ablagerung bewegt.

SCHIEFERUNG

ist eine **Gesteins-Verformungsstruktur**, welche bei der Metamorphose entsteht. **Schieferungsflächen werden durch plättchenförmige Mineralkörner (Glimmer etc.) gebildet.** Diese wurden **bei der Gesteinsverformung in einer Ebene konzentriert und ausgerichtet.** Je nach Kleinheit und Menge der eingeregelten Schichtsilikate und dem Bruchverhalten des geschieferten Gesteins unterscheidet man folgende Grundtypen geschieferter Gesteine – geordnet nach zunehmendem Metamorphosegrad:

Tonschiefer	Sehr feinkörnige, feinplattig-schiefrige Gesteine. Die Schieferung durch dringt die Gesteine im mm-Bereich.
Glimmerschiefer	Fein- bis mittelkörnige Gesteine, in denen die glänzenden Glimmer-
	plättchen auf den Schieferungsflächen deutlich erkannt werden können.
	Glimmerschiefer spalten in Platten von cm-Dicke.
Gneise	Grobplattige bis grobbankige, mittel- bis grobkörnige Gesteine. Auf den
	Schieferungsflächen sind die Glimmermineralien deutlich erkennbar. Die
	Schieferung ist meist auch wellig, faserig oder nur schwach ausgebildet.

SCHICHTUNG ODER SCHIEFERUNG – WIE KANN ICH ES UNTERSCHEIDEN?

Auch wenn es manchmal schwierig ist zu entscheiden und es Gesteine gibt, die sowohl geschichtet als auch geschiefert sind, hilft diese einfache Regel:

- Variationen in der Gesteinsart ergeben eine Schichtung
- In einer Ebene eingeregelte Glimmerplättchen verweisen auf eine Schieferung.

Auf welchen Fotos der Kartensets 5 und 6 sind Schichtungen, auf welchen sind Schieferungen erkennbar?

2chieferung: auf allen Fotos 5g – 5i, 6g – 6i

ANLEITUNG «SCHICHTUNG VS. SCHIEFERUNG» ERLEBEN LASSEN

SCHICHTUNG

Einige TN legen sukzessive einen ausgestreckten Unterarm/Hand übereinander \rightarrow ein geschichteter Stapel entsteht. Man kann auch Kleidungsstücke übereinander schichten, oder ein Sandwich schichtweise belegen ...

SCHIEFERUNG

- Gruppe in kleinem Kreis. Coach fragt: wie liegen in einem Granit die plättchenförmigen Glimmerkristalle im Raum? Zeigt das mit euren Handflächen an! → Die Glimmerplättchen (symbolisiert durch die Hände) liegen orientierungslos in allen Richtungen im Gestein (Fotos 1a und 1b).
- 2. Die TN verharren mit ihren Händen so.
- 3. Nun spielt der Coach «Gebirgsbildung» → der Granit mit seinen Glimmerplättchen wird zusammengedrückt (Foto 2) → die Hände beginnen sich anzunähern und in eine Ebene einzurotieren
- 4. Wenn das Hände-Kuddelmuddel ganz zusammengedrückt ist, liegen alle Hände flach eingeregelt und konzentriert in einer Ebene → eine Schieferung ist entstanden, und aus dem Granit ist ein Gneis geworden (Fotos 3a, 3b).

Foto 1a: Gruppe mit «Granit-Händen»

Foto 2: langsames Zusammendrücken

Foto 3a: Hände ganz flach/zusammen

Foto 1b: Granit mit sichtbaren Glimmerplättchen

Foto 3b: Gneis mit Glimmer-Ebenen

10 Ausbildungsgebiete des SAC und ihre Gesteine

GEBIET	SUSTENPASS – STEINGLETSCHER
Tektonische Situation	Das Gebiet liegt im nördlichen Teil des Aar-Massivs, einem Stück Grundgebirge des europä- ischen Kontinentalrandes. An der Nordseite von Gadmen- und Meiental folgen darüber die darauf abgelagerten Sedimentgesteine, die infolge der starken Anhebung des Aar-Massivs in unserem Gebiet wegerodiert wurden.
Gesteine	Erstfelder Gneiszone mit dem Hauptgestein «Erstfelder Gneis» (GdS Nr. 40). In den Blöcken oberhalb Hotel Steingletscher findet man auffällige Mischgesteine aus sehr hellen und dunkelgrünen Anteilen («Amphibolit-Schollenmigmatite).
Was man in der Landschaft sieht	Sehr typisch die Gneis-Morphologie am Pfriendler und an den Fünffingerstöcken. Auffällig die Auflagerung der Sedimentgesteine der Wendenstockkette, deren Wände aus Hochgebirgskalk bestehen, darüber der bräunliche Hohgantsandstein. Wunderschöne Gletscherschliff-Rundhöckerlandschaft («In Miseren-Seeboden») Rund um den Steingletscher Phänomene der jüngeren Gletschergeschichte, vorab die markante 1850er-Moräne.
Hütte steht auf	Hotel Steingletscher und Tierberglihütte auf Erstfeldergneis
Gipfel aus	Pfriendler, Fünffingerstöcke, Vorder Tierberg: Erstfelder Gneis (GdS Nr. 40) Mittlerer/hinterer Tierberg, Gwächten- und Sustenhorn: Biotitgneise und Amphibolit- Schollenmigmatite (GdS Nr. 41, 42).
GEBIET	FURKAPASS – SIDELEN – ALBERT HEIM
Tektonische Situation	Südrand des Aar-Massivs, einem Stück Grundgebirge des europäischen Kontinentalrandes. Die Pass- und Talzone Oberalp-Hospental-Furka markiert die Südgrenze des Massivs, dort liegen viel jüngere und weichere Gesteine, die leichter erodierbar waren.
Gesteine	Zentraler Aaregranit (GdS Nr. 49).
Was man in der Landschaft sieht	Hier ist der Aaregranit wenig bei der Alpenbildung verschiefert worden, deshalb dominieren echte Granit-Berggestalten: Blockig-kantige Formen. Einzig am Gletschhorn ist die Schieferung etwas ausgeprägter → Plattenschüsse. Blick auf die weichen Gesteine der Passzone und in die südlich daran anschliessenden Gneise und Granite der Gotthard-Decke. Reichhaltige Glazialmorphologie.
Hütte steht auf	Sidelen und Albert Heim: Aaregranit / Tiefenbach: Glimmerschiefer / Furkablick: tonige Schiefer.
Gipfel aus	Alle aus Aaregranit.
GEBIET	GRIMSEL – BÄCHLITAL – GELMER
Tektonische Situation	Mitten im Aar-Massiv, und mitten im darin eingelagerten plutonischen Körper des Aaregranits.
Gesteine	Fast ausschliesslich Aaregranit (GdS Nr. 49). Im Gebiet rund um den Grimselsee und bis zu den Gärstenhörnern liegt eine etwas ältere Variante vor: der Grimsel-Granodiorit; er ist dunkler, weil reicher an Dunkelglimmer-Biotit, als der Aaregranit.
Was man in der Landschaft sieht	 Einmalige Granitlandschaft, in den tieferen Lagen bis zur eiszeitlichen Schliffgrenze auf ca. 2500 m geprägt durch den Gletscherschliff. Darüber ist an den Bergen die leichte alpine Vergneisung des Granits an den teilweise plattigen Strukturen, an den Couloirs und Gratzacken erkennbar. Die Schieferungsflächen fallen steil nach SSE ein.
Hütte steht auf	Bächlital- und Gelmerhütte liegen im Aaregranit. Im Gelmergebiet ist der Granit kaum verg- neist und deshalb sehr massig-blockig, im Bächlital etwas stärker gneisig und deshalb oft plattiger.
Gipfel aus	Aaregranit und Grimsel-Granodiorit.

GEBIET	BERGELL – ALBIGNA				
Tektonische Situation	Im nördlichen Teil der grossen Bergeller Granit-Intrusion, die während der Alpenbildung in das Gesteinsdecken-Gebäude eindrang.				
Gesteine	Bergeller Granit (GdS Nr. 121), mit zahlreichen hellen Ganggesteinen (als helle Streifen im Granit sichtbar), so genannte Aplite (feinkörnig) und Pegmatite (grobkörnig).				
Was man in der Landschaft sieht	 Typische Granitlandschaft; der Bergeller Granit weist verschiedene Kluftsysteme auf, welche dann die Risse und Verschneidungen bilden – und von denen aus Bergstürze wie derjenige am Cengalo von Sommer 2017 ausgelöst werden können. Gegen Norden geht die Aussicht von den Gipfeln auf verschiedene Gneisdecken, welche eine deutliche Lagerung mit schrägem Einfallen mit ca. 20° gegen Osten zeigen. 				
Hütte steht auf	Bergeller Granit; im Bereich der Staumauer mit besonders grossen Kalifeldspat-Kristallen (bis über 10 cm).				
Gipfel aus	Bergeller Granit.				
GEBIET	MOIRY				
Tektonische Situation	Das Gebiet liegt am Übergang von drei Gesteinsdecken: bis zur Staumauer «Mischabel- Siviez-Decke» mit Gneisen und Schiefern; Hüttenweg bis kurz unter der Hütte: Tsaté-Decke mit Bündnerschiefern und Grüngesteinen (ehemaliger Ozeanboden), ab Hüttenfels bis zu den Gipfeln dann «Dent Blanche – Decke», bestehend vorwiegend aus Arollagneis.				
Gesteine	Vorwiegend verschiedene Ausprägungen des Arolla-Gneises. Dazwischen dunklere Diorit-Gesteine.				
Was man in der Landschaft sieht	Die Landschaft ist geprägt von Gneisen und Schiefern. Die wie ein Deckel auf den weicherer Gesteinen der Tsaté-Decke liegenden Gneise der Dent Blanche-Decke können von der Hütte aus an der Couronne de Bréona erkannt werden. Am Hüttenweg erlebt man den Übergang am Ende des Moränenwegs mit dem Einstieg in den ruppig-felsigen Schlussteil. Tolle Gletschervorfeld-Moränenlandschaft entlang des Hüttenwegs. Am Beginn des Hüttenwegs Blöcke aus Serpentinit-Gestein häufig (GdS Nr. 88).				
Hütte steht auf	Schutt, Arollagneis und Diorit (gleich oberhalb der Hütte).				
Gipfel aus	Verschiedenen Ausprägungen des Arollagneis (GdS Nr. 105).				
GEBIET	ORNY				
Tektonische Situation	Liegt im nordöstlichen Teil des Plutons des Mont Blanc-Granits.				
Gesteine	Im ganzen Gebiet teilweise etwas unterschiedliche Ausprägungen des Mont Blanc Granits. Die Bergstation von La Breya liegt noch in Rhyolith-Gestein – dem an oder nur wenig unter der Oberfläche erstarrten Äquivalent des Granits. Es ist sehr dicht-feinstkörnig und zerfällt in klötzchenartige Stücke.				
Was man in der Landschaft sieht	 Grossartige Granitlandschaft mit den für Granit typischen klotzigen Bergformen. Der Mont Blanc – Granit wurde im Gegensatz zum Aaregranit bei der Alpenbildung kaum verformt (zu Gneis umgewandelt). Folgen der Klimaerwärmung: Gletscher-Rückgang, Ausaperung von Nordflanken, Steinschlag). Fernblick gegen ENE in die Deckenlandschaft der Walliser Hochalpen. 				
Hütte steht auf	Mont Blanc Granit, fast ohne grössere Kalifeldspat-Einsprenglinge.				
Gipfel aus	Mont Blanc Granit.				